Architecture of the PPR gene family in the moss Physcomitrella patens
نویسندگان
چکیده
Pentatricopeptide repeat (PPR) proteins are widespread in eukaryotes and in particular, include several hundred members in land plants. The majority of PPR proteins are localized in mitochondria and plastids, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional level in gene expression. However, many of their functions remain to be characterized. In contrast to vascular plants, the moss Physcomitrella patens has only 105 PPR genes. This number may represent a minimum set of PPR proteins required for post-transcriptional regulation in plant organelles. Here, we review the overall structure of the P. patens PPR gene family and the current status of the functional characterization of moss PPR proteins.
منابع مشابه
On the expansion of the pentatricopeptide repeat gene family in plants.
Pentatricopeptide repeat (PPR) proteins form a huge family in plants (450 members in Arabidopsis and 477 in rice) defined by tandem repetitions of characteristic sequence motifs. Some of these proteins have been shown to play a role in posttranscriptional processes within organelles, and they are thought to be sequence-specific RNA-binding proteins. The origins of this family are obscure as the...
متن کاملIsolation and regeneration of protoplasts of the moss Physcomitrella patens.
This method is adapted from a protocol described by Grimsley et al. (1977). For more information about P. patens as a model organism, see The Moss Physcomitrella patens: A Novel Model System for Plant Development and Genomic Studies (Cove et al. 2009a). For details about the growth of P. patens on cellophane overlay plates, see Culturing the Moss Physcomitrella patens (Cove et al. 2009b). For p...
متن کاملProtection of Telomeres 1 is required for telomere integrity in the moss Physcomitrella patens.
In vertebrates, the single-stranded telomeric DNA binding protein Protection of Telomeres 1 (POT1) shields chromosome ends and prevents them from eliciting a DNA damage response. By contrast, Arabidopsis thaliana encodes two divergent full-length POT1 paralogs that do not exhibit telomeric DNA binding in vitro and have evolved to mediate telomerase regulation instead of chromosome end protectio...
متن کاملTransformation of moss Physcomitrella patens gametophytes using a biolistic projectile delivery system.
RELATED INFORMATION For more information about P. patens as a model organism, see The Moss Physcomitrella patens: A Novel Model System for Plant Development and Genomic Studies (Cove et al. 2009a). The growth of protonemal tissue is described in Culturing the Moss Physcomitrella patens (Cove et al. 2009b), and a method for isolation of P. patens protoplasts is found in Isolation and Regeneratio...
متن کاملLarge-scale gene expression profiling data for the model moss Physcomitrella patens aid understanding of developmental progression, culture and stress conditions.
The moss Physcomitrella patens is an important model organism for studying plant evolution, development, physiology and biotechnology. Here we have generated microarray gene expression data covering the principal developmental stages, culture forms and some environmental/stress conditions. Example analyses of developmental stages and growth conditions as well as abiotic stress treatments demons...
متن کامل